
presented by:
Tim Haithcoat

University of Missouri
Columbia

With materials from:
Peter Veenstra

M.J. Harden Associates

Relational Database
Management Systems,
Database Design, and

GIS

Overview of GIS Database Design

• A geographic information system (GIS) is
comprised of several elements, including
• Hardware
• Software
• Users/People
• Procedures/Methods
• Data

• GIS Organizations…
• Select hardware and software
• Train their users
• Develop procedures
• The technology incorporated into business flow

• Comprised of two systems - one to handle the spatial
elements, another to manage attribute data

• Most hybrid systems use a proprietary data model
• Separate storage systems complicate database maintenance,

increase disk access and network traffic
• Requires diligence, attention to detail and special

applications to maintain feature-attribute linking.
• What happens when a user splits a line segment?
• Where does the original attribute records go?
• How do you maintain a historical record of line splitting?
• How are other GIS layers affected by splitting a pipe?

• Example of a Hybrid Model? (ARC/INFO, ESRI ShapeFile)
• Overview of GIS Database Design

• Continuous, non-tiled, spatial database for adding
spatial data to a relational database management
system (RDBMS).

• Database interface that couples spatial data to the
RDBMS allowing for high-performance access to all
the data in there, spatial and non-spatial.

• No more split system data management-single source
editing. Requires special maintenance application to
main topology, perform database edits, updates and
maintenance (ArcFM)

• Utilize the inherent strengths of commercial
RDMBS’s...

Spatial Server (RDBMS) Hybrid Model
-or- Flat File

User Access Roles, users, built-in security. No inherent security.
Security Stored in Proprietary Files not

accessible from any other application
than the RDBMS.

Disk files, easily recognizable, editable
with external applications.

Data Integrity Enforces referential integrity, data
stamping, user access and rights,
triggers, procedures, transactions
(rollbacks, commits)

No internal enforced referencing (IDEDIT,
RENODE).

Buffered
Throughput

Designed for fast transfer of packets
through network. Only access what
you need.

Access everything within the spatial extent,
accessing both spatial and attribute features
each with their own data structure.

Multi-user Multiple users can access data.
Allows for row or table level locking.
Optimistic and pessimistic updating.
User roles determine editing rights.

Only one user can edit records. No built in
locking or updating mechanisms. No built
in security.

Open Data
Structure

Relational database mechanism is
well known. ORACLE Spatial Data
Option is normalized tables, SDE uses
blobs - but reveals a lot about the data
structure.

ShapeFIles: One feature table, one index
file and one dBase file - published - very
difficult. ARC/INFO totally proprietary.

Robustness Roll-back segments. Redo Logs files,
Back and Recovery tools. Well
established kernel.

Lose or corrupt the file and hope that you
have some back-up.

Data
Restructuring

Views can be created from tables and
can be stored as objects within the
database

One flat file is a flat file. Can create
definitions within ArcView or reselect
statements in ARC/INFO. Not predefined
objects.

A method for structuring data in the form of sets of
records or tuples so that relations between

different entities and attributes can be used for
data access and transformation.

~ Burroughs, 1986

A database structure commonly used in GIS in
which data is stored based on 2 dimensional

tables where multiple relationships between data
elements can be defined and established in an

ad-hoc manner.
~ Croswell, 1991

Relational Database Management System - a
database system made up of files with data

elements in two-dimensional array (rows and
columns). This database management system
has the capability to recombine data elements
to form different relations resulting in a great

flexibility of data usage.
~ after Martin, 1976

• A database that is perceived by
the user as a collection of two-
dimensional tables

• Are manipulated a set at a time,
rather than a record at a time

• SQL is used to manipulate
relational databases

The Relational Database Concept

• Proposed by Dr. Codd in 1970
• The basis for the relational database

management system (RDBMS)
• The relational model contains the

following components:
• Collection of objects or relations
• Set of operations to act on the relations
• Data integrity for accuracy and consistency

(1 of 2)

• Rigorous design methodology (normalization,
set theory)

• All other database structures can be reduced to a set
of relational tables
• Mainframe databases use Network and Hierarchical

methods to store and retrieve data.
• Access to the data is hard-coded
• It is very difficult to extract data from this type of database

without some pre-defined access path.
• Extremely fast retrieval times for multi-user, transactional

environment.
• Ease the use compared to other database systems

(2 of 2)

• Modifiable - new tables and rows can be
added easily

• The relational join mechanism
• Based on algebraic set theory - a set is a group of

common elements where each member has some unique
aspect or attribute

• very flexible and powerful
• Fast Processing

• Faster processors, multi-threaded operating and parallel
servers

• Indexes, fast networks and clustered disk arrays
• 57,000 simultaneous users (Oracle/IBM)

• Expensive solutions that require
thorough planning

• Easy to create badly designed and
inefficient database designs if there is
not any proper data analysis prior to
implementation

DBMS
• A software package for

stage, manipulate and
retrieval of data from a
database

• Serves many users
simultaneously

Kernel
• Core software, controls query

processing, access paths to
data, user access management,
storage management,
indexing, transaction
processing and read/update
information

Query Language Interface
• Wrapped around the kernel,

allows the ad hoc query against
the database

Interactive Query Tool
• Access, edit, and update of

one or more linked data
tables using screen based
forms.

Utilities
• Import/export/backup

tuning tools
• Parameterization/report

writers

Database
• Physical storage of the data

objects within data files
• contains the system

catalogues (data dictionary)
• A collection of one or more

data files stored in a
structural manner

• Relationships which exist
between different sets of
data

Processes (memory)
• Database Writer,

Archiving, User Manager,
Server Manager, Redo
Log files

Design

Business Information Requirements

Conceptual

Data Modeling

Database

Build

Database

Design

Entity-Relationship Data Model
Entity Definitions

Table Definitions
Index, View, Cluster, and
Space Definitions

Strategy

Analysis

Design

Build

STRATEGY

DESIGN

Operational SystemOperational System

BUILD USER

DOCUMENTATION

TRANSITION

PRODUCTION

ANALYSIS

Conceptual

Data Modeling

Database

Build

Database

Design

E-R Data Model
Entity Definitions

Table Definitions
Index, View, Cluster,
and Space
Definitions

Strategy

Analysis

Design

Build

Function

Modeling

Application

Build

Application

Design

Function Hierarchy
Function Definitions
Data Flow Diagrams

Module Designs

Operational
Database

Operational
Application

Operational
System

Cross-Checking

Cross-Checking

Good Database Design Prevents...

• Unnecessary or forgotten data
• Inflexibility for database re-sizing or

modification
• Poor data element specification
• Poor database integration between the parts of

the database
• Unsupported applications
• Major database update costs

• Depends on the ability of the system to
provide quality information

• Depends on the quality of usability of the
data that resides on the system

• Ad-hoc approach versus systematic
approach

• Begin with the “end in mind”

• Applications
• Data format and size
• Data maintenance and update
• Hardware/software
• Number and sophistication of users
• Schedule and budget of the project
• Management approach

• Is to maintain…
• Data consistency/integrity
• Reduce data redundancy
• Increase system performance
• Maintain maximum user flexibility
• Create a useable system

Functional & Organizational Requirements
Analysis (User Needs)

• Identify potential GIS users within the organization
• Identify initial participants in the GIS development

effort
• Application identification and description
• Applications are the driving force of the GIS

• Accomplish some task
• Examples: create a map, generate a report, tack,

manipulate the database, perform analysis
• Needs to be comprehensive and through in definition

of applications
• Has a big impact on database design and development
• Provides initial user documentation

Principal Elements: Design Process

• Design cartographic layers
• Design business tables

• Features attributes, legacy data, look
up values…

• Implement cartographic layer tiling

(1 of 2)

• Based on user needs choose the relevant cartographic
layers

• Features on, under or above the earth’s surface are
abstracted to points, lines, or polygons

• Complex data structures are based on these data
primitives
• Networks, TINS, Regions…

• Scale determines representation of phenomena
• A stream is a line as 1:250,000 scale
• A stream is a polygon at 1:24,000

• Each thematic layer is stored in its own file
• Proprietary file format

(2 of 2)

• Challenges lie in co-incident line management
• Data maintenance by different departments
• Organize layers according to similar themes

• Choose appropriate spatial feature type for representing the
theme (polygon, line, grid, image)

• Requires knowledge of the problem domain

• Develop feature symbology/annotation
• Describe features within they layers
• Relate features to previously identified applications
• Develop standards for map/tabular precision and

accuracy

Cartographic Layer Partitioning

• Organize or tile data layers into meaningful
sub-groups

• Increase user access times -same amount of
data

• Boundaries must remain stable - difficult to
change

• Choose physical units rather than political
ones

• Apply abstract grids like USGS Quad Index,
PLSS Schema

• Data name
• Data create date
• Creator’s name
• Data owner
• Data sensitivity
• Which groups can see

the data?
• Source of data
• Construction process of

the data

• Record scale constraints,
perspective, magnification,
filters or definitions

• Record Geodesy
information (Datum,
Projection)

• Record Accuracy and
Errors Standards

• Federal Geographic Data
Committee (FGDC) _
National Spatial Data
Infrastructure (NSDI

• Conceptual and Data Modeling
• Store all the descriptive attribute (tabular)

information for the project
• The manner which business data is

organized is very important
• Anticipate uses as well as update

procedures

• Separates data into meaningful groupings making it easy
to maintain, update, modify and protect

• Provides rules for organizing data into tables that relate
to each other by common keys

• Requires thorough knowledge of the data in its
relationships

• Normalized tables can be related to form new
relationships

• Assign each feature (point, line, or polygon) a unique
code

• Allows a link to the tabular business data stored in a
RDBMS

• Data Flow Diagramming
• Model Applications

• Triggers
• Data flows
• Results

• Model System Outputs
• Reports
• Calculations

• Very important - users have confidence in the data
• Comprehensive data dictionary

• Describe all the items, codes, constraints, value ranges and
structures of each layer

• Provides input to automatic validation and quality control
operations/routines

• Diagrams the database design discussion notes about
context and content of each layer

• Description of data sources for features and attributes
for each layer

• Implementation, conversion, processing procedures
and accuracy tolerances

• Exhibit full range of complexity
• Most plans do not survive contact with the

enemy
• Implementation and design plans require

modification when tested
• Test physical database design performance and

completeness
• Peer review applications and complete layers
• Document pilot study results - lessons learned

there can be extended

• Get each layer into digital format (both
graphical and tabular information)

• Apply data conversion quality control
• Objective is to catch errors and lapses in

quality up-front
• Clear definition of accuracy tolerances for each

database layer
• Develop metadata on the GIS database

• Metadata is descriptive information about the data
• What is the data source? How accurate is it?

• Manipulate, update and expand the
database

• Administer the database
• Provide programming services
• Track new technology and take advantage

of it when appropriate
• Add new users to the system
• Develop an adequate training capability

Two items that are never fully investigated nor outlined or defined:

Mapping Application
• Allow user to determine

exactly how the final map
product should be
displayed (in excruciating
detail!).

• Pay attention to how each
theme should be displayed.
• Does the database support

this?
• What about labeling?
• What about symbolization?

Maintenance Application
• User signs out required features.

Audit trail begins.
• User should be allowed to lock, edit,

update and add features. Should lock
both the spatial and attribute records
associated with the feature. Should
provide an audit trail.

• Should automatically update
metadata information. Should be a
transactional system. Should
encapsulate and enforce business
rules. Should validate all changes to
the database.

• User signs new or updated features
back into the database.

• Top-down approach that transforms business
information requirements into an operational database.

• Information requirements are tightly coupled with
business function requirements

• Objective is to define and model the things of
significance about which the business needs to know or
hold information, and the relationships between them.

• Ignores hardware and software.
• High level look at the database.

• Objective: map the information requirements
reflected in an Entity-Relationship Model into
a Relational Database Design.

• Software specific.
• Hardware independent.

• Objective is to create physical relational
database tables to implement the database
design.

• Hardware and software dependent
• File structure and memory requirements.
• Network dependent
• The structured Query Language (SQL) is used

to create and manipulate relational databases.

Tables, Relationships, Set Theory

• The power of a relational database comes from its
ability to relate significant data together

• Database tables are related to each through columns
of data sharing identical data (called keys).

• Each table is based on mathematical set theory
(each element in the set must be unique).

• Relational databases are usually manipulated a set
at a time rather than a record at a time.

• The Structured Query Language (SWL) is used to
manipulate relational databases.

• Describes or models phenomena that are of significance
to the business

• Consist of rows of data (Tuples) that are uniquely
identified from other other rows of data. Each row
represents or corresponds to an instance of the
phenomena being modeled.

• Made of columns or attributes that describe the
phenomena being modeled.

• Are often the implementation of an entity
• Are the logical and perceived data structure, not the

physical data structure, in a relational system.
• Are abstractions of reality.

Relational Database Terminology

• Each table is composed of rows and columns

• You can manipulate data in the rows by executing
Structured Query Language (SQL) commands.

ID NAME PHONE SALES_
REP ID

201 Unisports 55-2066101 12
202 Simms Athletics 81-20101 14
203 Delhi Sports 91-10351 14
204 Womansport 1-206-104-0103 11

S_CUSTOMER Table (Relation)

Row (Tuple)

Column (Attribute)

Relational Database Terminology

• Each row of data in a table is uniquely
identified by a primary key (PK).

• You can logically relate information from
multiple tables using foreign keys (FK).

ID NAME PHONE SALES_
REP_ID

ID LAST_
NAME

FIRST_
NAME

201 Unisports 55-2066101 12 10 Havel Marta
202 Simms

Atheletics
81-20101 14 11 Magee Colin

203 Delhi Sports 91-10351 14 12 Giljum Henry
204 Womansport 1-206-104-0103 11 14 Nguyen Mai

Primary Key Foreign Key Primary Key

S_EMP Table
ID LAST_NAME
-- ---------------------------
1 Velansquez
2 Ngau
3 Nagayama
4 Quick-To-See
5 Ropeburn
6 Urguhart
7 Menchu
8 Biri
9 Catchpole

10 Havel
11 Magee
12 Giljum
12 Sedeghi14 Nguyen
15 Dumas
16 Maduro

DEPT_ID

50
50
50
50
50

505
50
31
31
32
33
34
35
41

S_DEPT Table
ID NAME REGION_ID
-- --------------------- ---------------
30 Finance 1
31 Sales 1
32 Sales 2
43 Operations
50 Administration S_REGION Table

ID NAME
-- ---------------------
1 North American
2 South America
3 Africa/Middle East
4 Asia
5 Europe

Table Name:
Column
Name
Key
Type
Nulls/
Unique
Sample
Data

• A primary key (PK) column or set of columns that
uniquely identifies each row in a table

• Each table must have a primary key and a primary
key must be unique

• A PK consisting of multiple columns is called a
Composite Primary Key

• No part of the PK can be null
• Tips for identifying PKs

• Must be a unique value
• Value in the PK for each tuple or row should never change
• PK is best auto-generated - should not contain business info

• A foreign key (FK) is a column or combination
of columns in one table that refers to a primary
key in the same or another table

• A FK must match an existing primary key value
(or else be null)

• If a FK is part of a primary key, that FK cannot
be null

• In order for a relation to be established between
two tables, they both must contain a common
data element
• (e.g. a field that has been defined the same in both tables)

• Refers to the accuracy and consistency of the
data

• Data integrity constraints should be enforced
by DBMS or the application software

• The rules of the business can also determine
the correct state for a database

• Such rules are called User-Defined Data
Integrity Constraints

• Entity
• No part of the primary key can be NULL and the value must

be unique
• A NULL is the absence of a value

• Referential
• A set of validation rules applied to an entity or table such as

uniqueness constraints, domain validation of columns or
correspondence of foreign keys to the primary key of the
related table

• Unique - each record in table must have a PK with a unique value
• Domain - range of possible values for an individual column or attribute
• Referential Integrity - each value for a FK within a table must correspond to

the value of one record’s PK in the Foreign table or be a NULL column
• Values in column must match the defined data type

• User Defined
• Values must comply with the business rules

• The art of distilling a business requirements
statement into a conceptual diagram

• Business requirements are determined from
user needs assessments

• Is high level abstraction and occurs before
database design and implementation

• Is independent of hardware or software
• Goal: develop an entity-relationship model

representing the business requirements

easement
Easement id
Fnode#
Tnode#
Lpoly#
Rpoly#
Length
Coverage#
Coverage_id

easement
Easement id
Fnode#
Tnode#
Lpoly#
Rpoly#
Length
Coverage#
Coverage_id

easements
Instrument_no
Book
Page
Case_no
Reference_no
Width
Easement_area
Last_updated
Last_user

easements
Instrument_no
Book
Page
Case_no
Reference_no
Width
Easement_area
Last_updated
Last_user

easement_type_1
Easement type
description
inactive

easement_type_1
Easement type
description
inactive

acquisition_type_I
Acquisition
description
inactive

acquisition_type_I
Acquisition
description
inactive

parcel_easement_data
Easement id
Re no
Acquired_date
Disclaimed_date
Last_updated
Last_user

parcel_easement_data
Easement id
Re no
Acquired_date
Disclaimed_date
Last_updated
Last_user

disclaimer_type_1
Disclaimer type
description
inactive

disclaimer_type_1
Disclaimer type
description
inactive

ref_163

ref_166

ref_176

ref_170

ref_173

COURSE
Code
Name
Fee
Duration

STUDENT
name
phone number

INSTRUCTOR
(TEACHER)

name
phone number

CATALOG ITEM
* current price
* package quantity
* unit of measure

PRODUCT
#* id
* name
* description

VENDOR
#* code
* namethe

supplier
of

supplied
by

for

for

• A line between two
entities

• Lower case
relationship names

• Optionality
Optional (may be)
Mandatory (must be)

• Degree
One or more
One & only one

Many
(crowsfoot)

mandatory
optional

one

ACCOUNT
* number

BANK
#* number

the
manager

of

managed
by

ACCOUNT
* number

BANK
#* number

the
manager

of

managed
by

Entity-Relationship (E-R) Model

• Should accurately model the organization’s information
needs and support the functions of the business.
• Entities, Relationships, Attributes

• Is an effective means for collecting and documenting an
organization’s information requirements

• Robust Syntax
• User Communication
• Ease of Development
• Definition of Scope
• Integration of Multiple Applications
• Can be mapped to a hierarchical, network, or relational

database
• Can be used as the template for an Enterprise Object Model

• Identify and model entities
• Analyze and model the relationships between the

entities
• Analyze and model the attributes that describe the

entities
• Identify unique identifiers for each entity
• Develop a complete entity-relationships model

from the statement of information requirements
• Normalize the entities and relationships between

them
• Advanced modeling

(1 of 2)

• A thing of significance about which
information needs to be known or held.

• an object of interest to the business, a class or
category of thing, a named thing

• Each entity must have multiple occurrences or
instances

• Each entity instance has specific values for the
entities attributes

• A each instance of must be uniquely
identifiable from other instances of
the same entity

(2 of 2)

• An attribute or set of attributes that uniquely
identify an entity is called a Unique Identifier
(UID).

• Attributes describe entities and are the specific
pieces of information which need to be known.

• An entity must have attributes that need to be
known from the business’ viewpoint or it is not
an entity within the scope of the

business’s requirements.

Entity Diagramming Conventions

• Soft box with any dimensions
• Singular unique entity name
• Optional synonym name in brackets
• Attribute names in lower case
• Mandatory Attributes prefaced with a *
• UID Attributes prefaced with a #

• Examine the business requirements definition or
statement

• Examine the nouns? Are they items of significance?
• Name each entity.
• Is there information of interest that the business needs

to hold?
• Is each instance of the entity uniquely identifiable?
• Which attribute or attributes could serve as it’s UID?
• Write a description of the entity.
• Diagram each entity and a few of it’s attributes.

Entity Name:
Attribute
Name
Tags

Sample
Data

(1 of 2)

• Always clarify a data attribute with a descriptor.
• Are information about an entity that needs to be

known or held.
• Describe an entity by qualifying, identifying,

quantifying or expressing the state of the entity.
• Represent a description or detail, not an instance.
• Name should be clear to the user no codified for the

developer.
• Name should not include the entities name.
• Attribute names should be specific.

(2 of 2)

• An attribute should only be assigned to a single entity.
• Always break attributes down to their lowest

meaningful components.
• The level of decomposition depends on the business

requirements.
• Verify that each attribute has a single value for each

entity instance.
• A multi-valued attribute or a repeating group is not a

valid attribute.
• A repeated attribute indicates a missing entity.

• Verify that an attribute is not derived or
calculated from the existing cvalue of other
attributes

• Derived attributes are redundant
• Redundant data leads to inconsistent data

values
• Address the option of storing derived data in

the Database Design Phase
• Do not include derived attributes in an E-R

model.

• Identify attributes by examining interview notes and
by asking the user questions

• Attributes may appear in interview notes as:
• Descriptive words or phrases
• Nouns
• Prepositional phrases (e.g. salary amount for employee)
• Possessive nouns and pronouns (e.g. employee’s name)

• Questions to ask the user…
• What info do you need to know or hold about ENTITY X?
• What info would you like displayed or printed about ENTITY X?

• Examine documentation on existing manual
procedures or automated systems to discover
additional attributes or omissions.

• A U ID is any combination of attributes and/or
relationships that serve to uniquely identify an
occurrence of an entity. Each entity occurrence
must be uniquely identifiable

• All components of an entity must be
mandatory (*)

• Tag each UID attribute with an (#*)

• Are all attributes decomposed?
• Are all attributes single valued?
• Is each attribute dependent on the entities

entire UID?
• Is each attribute dependent on only one part of

the entities UID?

• Is a two directional significant association
between two entities or between an entity and
itself

• All relationships should represent the
information requirements and the rules of the
business.

• Can be read in one direction or the other

• Identify the first entity.
• Identify the optionality (must be or may be).
• Identify the relationship.
• Identify the cardinality (one or more or one

and only one).
• Identify the relate entity.

Many to One
(M to 1 or M:1)

• Has a degree
(cardinality) of one
or more in one
direction & a degree
of one and only one
in the other direction.

• Are very common.
• M:1 relationships

that are mandatory in
both directions are
very rare.

Many to Many
(M to M or M:M)

• Has a degree of one
or more in both
directions.

• Are very common.
• Are usually optional

in both directions,
although usually a
M:M relationship is
optional in one
direction.

One to One
(1 to 1 or 1:1)

• Has a degree of one
and only one in both
directions.

• Are rare.
• 1:1 relationships that

are mandatory in
both directions is
very rare.

• Entities which seem
to have a 1:1
relationship may
really be the same
entity.

Steps to Analyze & Model Relationships

• Determine the existence of a relationship
• Does a significant relationship exist between

ENTITY A and ENTITY B.
• Use a relationship matrix to systematically

examine each pair of entities.
• Name each direction of the relationship
• Ask a relationships name - how are ENTITY A

and ENTITY B related
• Log the relationship names in the relationship

matrix.

Steps to Analyze & Model Relationships

• Use a list of relationship name pairs to assist in
naming relationships:
• Based on - the basis for
• Bought from - the supplier of
• Description of - for
• Operated by - the operator of
• Represented by - the representation of
• Responsible for - the responsibility of

• Determine the optionality of each direction of
the relationship
• Draw the relationship lines with names

Steps to Analyze & Model Relationships

• Determine the cardinality of each direction of
the relationship
• Add the relationship degrees to the E-R diagram

• Read the relationship out loud to validate it
• First read a relationship in one direction, and then

read the relationship in the other direction
• Use a relationship matrix as an aid for the

initial collection of information about the
relationships between a set of entities.

• Map the contents of a relationship matrix
to an E-R diagram.

• An entity can be uniquely identified through a
relationship

• Use a UID bar to indicate that a relationship is
part of the entity’s UID.

Advanced Conceptual Data Modeling

• A relational database concept, but it’s principles apply to
Conceptual Data Modeling.

• A normalized entity-relationship data model automatically
translates into a normalized relational database design

• A step-by-step process that produces either entity or table
definitions that have:
• No repeating groups
• The same kind of values assigned to attributes or columns
• A distinct name
• Distinct and uniquely identifiable rows

• Third normal for is the generally accepted gal for a database
design that eliminates redundancy

• Higher normal forms a theoretical and not often used
• We go through the Normal Forms to avoid data integrity issues.

First Normal Form:
All attributes must be

single valued.
• Validate that each attribute has a

single value for each occurrence
of the entity. No attribute should
have repeating values.

• If an attribute has multiple
values, create an additional
entity and relate it to the
original entity with a

M:1 relationship.
Third Normal Form:

All attributes in an entity must
depend on the whole primary key,
the entire primary key and nothing
but the primary key (so help you

Codd!)

Second Normal Form:
An attribute must be dependent on its

entities entire unique identifier.
• Validate that each attribute is

dependent upon it’s entities entire
UID. Each specific instance of UID
must determine a single instance of
each attribute.

• Validate that an attribute is not
dependent upon only par of it’s
entities UID.

• If an attribute is not
dependent on its entities

entire UID, it is
misplaced and must

be removed.

• Objective: to map the information
requirements reflected in an entity
relationship model into a relational
database design

• Define the initial design to produce a
complete database design

• Document each relational table from an entity
in the E-R model to a Table Instance Chart

• Map the simple entities to tables
• Map attributes to columns
• Indicate required, unique and NULL attributes
• Map unique identifiers to primary keys
• Map relationships to foreign keys
• Document sample data to each column
• Re-normalize as required

Ref_202

turn_dir_I
open dir

description
inactive

restrained_join_subtype_I
res joint subtyp

description
inactive

hydrant_aat
fnode#
tnode#
lpoly#
rpoly#
length

coverage#
hydrant_id

hydrant_aat
fnode#
tnode#
lpoly#
rpoly#
length

coverage#
hydrant_id

bury_I
open dir

description
inactive

extension_size_I
extension

description
inactive

fire_hydrant_remarks
remark_no

remark
last_update

last_user

fire_hydrant
fh_no

main_id
low_pressure
high_pressure
flushing_status

elev_coord
fh_size

trns_to_open
in_service_date

reference_no
tap_permit_no
private_owner

map_page
abandoned

angle
last_updated

last_user

service_area
servarea_id
description

inactive

city_I
city

description
inactive

symbol_set_I
symbol_set
description

inactive

Fire_hydrant_head
fh id

valve_to_barrel
symbol_set

angle
last_update
last_user fdarea

area
perimeter
coverage#

coverage_id

fdarea
area

perimeter
coverage#

coverage_id

fire_district_I
fdarea_id

description
inactive

Fire_district_data
description

last_updated
last_user

symbol_set_I
symbol_set
description

inactive

joint_type_fire_hydrant_I
joint type

description
inactive

Ref_195

Ref_227

Ref_224

Ref_221

Ref_218

Ref_215

Ref_180
Ref_183
Ref_189

Ref_186

Ref_206

Ref_212

Ref_209

Ref_199

EASEMENT_AAT
FNODE_ Number(38) not null
TNODE_ Number(38) not null
LPOLY_ Number(38) not null
RPOLY_ Number(38) not null
LENGTH Float (126) not null
EASEMENT_ Number(38) not null
EASEMENT_ID Number(38) not null
EASEMENT ID <pk> Number (8) not null

EASEMENTS
EASEMENTID <pk.fk> NUMBER(8) not null
INSTRUMENT_NO NUMBER(16) not null
BOOK NUMBER(5) null
PAGE NUMBER(4) null
CASE_NO VARCHAR2(10) null
EASEMENT_TYPE <fk> VARCHAR2(2) null
REFERENCE_NO VARCHAR2(16) null
WIDTH NUMBER null
EASEMENT_AREA NUMBER null
LAST_UPDATED DATE null
LAST_USER VARCHAR2(30) null

EASEMENT_TYPE_L
EASEMENT_TYPE <pk> VARCHAR2(2) not null
DESCRIPTION VARCHAR2(50) null
INACTIVE VARCHAR2(1) null

ACQUISITION_TYPE_L
ACQUISITION <pk> VARCHAR2(1) not null
DESCRIPTION VARCHAR2(50) null
INACTIVE VARCHAR2(1) null

PARCEL_EASEMENT_DATA
ES�ASEMENT_ID <pk> NUMBER(8) not null
RE NO <pk> VARCHAR2(16) not null
ACQUISITION <fk> VARCHAR2(1) null
ACQUIRED_DATE DATE null
DISCLAIMER_TYPE <fk> VARCHAR2(2) not null
DISCLAIMED_DATE DATE null
LASTUPDATED DATE null
LAST_USER VARCHAR2(30) null

DISCLAIMER_TYPE_L
DISCLAIMER_TYPE <pk> VARCHAR2(1) not null
DESCRIPTION VARCHAR2(50) null
INACTIVE VARCHAR2(1) null

EASEMENT_TYPE = EASEMENT_TYPE
DISCLAIMER_TYPE = DISCLAIMER_TYPE

ACQUISITION = ACQUISITIONEASEMENT_ID= EASEMENT_ID

EA
SE

M
EN

T_
ID

 =
 E

A
SE

M
EN

T_
ID

V_EASEMENT
PARCEL_EASEMENT_DATA.LAST_UPDATE DATE

PARCEL_EASEMENT_DATA.LAST_USER VARCHAR2(30)

EASEMENTS.INSTRUMENT_NO NUMBER(16)

EASEMENTS.PAGE NUMBER(4)

EASEMENTS.CASE_NO VARCHAR2(10)

EASEMENTS.REFERENCE_NO VARCHAR2(16)

EASEMETNS.WIDTH NUMBER

EASEMENTS.EASEMENT_AREA NUMBER

EASEMENTS.LAST_UPDATED DATE

EASEMENTS.LAST_USER VARCHAR2(30)

EASEMENT_TYPE_L.DESCRIPTION VARCHAR(50)

PARCEL_EASEMENT_DATA.ACQUIRED_DATE DATE

EASEMENTS.EASEMENT_ID NUMBER(8)

EASEMENTS.BOOK NUMBER(5)

EASEMENTS.EASEMENT_TYPE VARCHAR2(2)

EASEMENTS_TYPE_L.EASEMENT_TYPE VARCHAR2(2)

EASEMENT_TYPE_L

PARCEL_EASEMENT_DATA

EASEMENTS

V_EASEMENT
PARCEL_EASEMENT_DATA.LAST_UPDATE DATE

PARCEL_EASEMENT_DATA.LAST_USER VARCHAR2(30)

EASEMENTS.INSTRUMENT_NO NUMBER(16)

EASEMENTS.PAGE NUMBER(4)

EASEMENTS.CASE_NO VARCHAR2(10)

EASEMENTS.REFERENCE_NO VARCHAR2(16)

EASEMETNS.WIDTH NUMBER

EASEMENTS.EASEMENT_AREA NUMBER

EASEMENTS.LAST_UPDATED DATE

EASEMENTS.LAST_USER VARCHAR2(30)

EASEMENT_TYPE_L.DESCRIPTION VARCHAR(50)

PARCEL_EASEMENT_DATA.ACQUIRED_DATE DATE

EASEMENTS.EASEMENT_ID NUMBER(8)

EASEMENTS.BOOK NUMBER(5)

EASEMENTS.EASEMENT_TYPE VARCHAR2(2)

EASEMENTS_TYPE_L.EASEMENT_TYPE VARCHAR2(2)

EASEMENT_TYPE_L

PARCEL_EASEMENT_DATA

EASEMENTS

Select PARCEL_EASEMENT_DATA.
LAST_UPDATED, PARCEL_EASEMENT_
DATA.LAST_USER, EASEMENTS.
INSTRUMENT_NO,EASEMENTS.PAGE,
EASEMENTS.CASE_NO,EASEMENTS.REF
ERENCE_NO, EASEMENTS.WITH,
EASEMENTS.EASEMENT_AREA,
EASEMENTS.LAST_UPDATED,
EASEMENTS. LAST_USER, EASEMENT_
TYPE_L.DESCRIPTION, PARCEL_
EASEMENT_DATA.ACQUIRED_DATE,
EASEMENTS.EASEMENT_ID,
EASEMENTS. BOOK, EASEMENTS.
EASEMENT_TYPE, EASEMENT_TYPE_L.
EASEMENT_TYPE from EASEMENT_
TYPE_L, PARCEL_EASEMENT_DATA,
EASEMENTS where
PARCEL_EASEMENT_DATA.
EASEMENT_ID = EASEMENTS.
EASEMENT_ID and EASEMENT_TYPE_L.
EASEMENT_TYPE = EASEMENTS.
EASEMENT_TYPE group by EASEMENT_
TYPE_L.EASEMENT_TYPE order by
EASEMENTS.EASEMENT.ID

SQL> CREATE TABLE EMPLOEE
2
3
4

(DEPTNO
DNAME
LOC

NUMBER(2)
CHAR (20)
CHAR(15)

NOT NULL PIMRARY KEY
NOT NULL
NOT NULL) ;

SQL> CREATE TABLE EMPLOYEE
2
3
4
5
6
7
8
9
10

(EMPNO
FNAME
LNMAE
JOB
HIREDATE
SAL
COMM
MGR
DEPTNO

NUMBER(5)
CHAR (15)
CHAR(15)
CHAR(9)
DATE
NUMBER (7,2)
NUMBER (7,2)
CQR(4)
NUMBER(2)

NOT NULL PRIMARY KEY
NOT NULL
NOT NULL
NOT NULL

REFERNCES EMPLOYEE (EMPNO)
NOT NULL REFERNECES (DEPTNO));

EMPLOYEE
EMP_
NUM

EMP_
NAME

DEPT_
NUM

DEPT_NAME MGR_
NUM

MGR_
NAME

PROJECT_
NUM

PROJECT_
NAME

START_
DATE

BILLED_
HOURS

PK
7902

7988

7562

SMITH

JONES

SMITH

10

20

10

SALES

MARKETING

SALES

7988

7699

7099

JONES

WALKER

PHILLIPS

15
35
45
15
25
45
25

FEASIBILITY
TESTING
HANDOVER
FEASIBILITY
ANALYSIS
HANDOVER
ANALYSIS

10-SEP-94
20-SEP-94
20-OCT-94
05-SEP-94
15-SEP-94
20-OCT-94
20-MAY-94

100
100
150
200
250
200
150

• Objective: to create physical relational database tables
to implement the database design. Structured query
language (SQL) is used to create & manipulate
relational databases.

• For each table & index, estimate the amount of disk
space required.

• Decide the placement of tables and indexes on
logically separate tablespaces.

• Decide placement of tablespaces on physically
separate disks.

• Define storage allocation procedures based upon the
expected patterns of data update and growth.

Plan Physical Storage Usage

Define Referential Integrity Constraints

• CASCADE DELETED, RESTRICTED
UPDATES, NULLIFY

• Triggers - denotes processing carried out under
certain conditions, i.e., may be actioned off before
or after a row insertion

• Used to speed the retrieval of data from RDBMS
by reducing the amount of searching that the
RDBMS must do to locate an individual record

Design Indexes

• Means of accessing a subset of database as if it
were a table, the view may be:
• Restricted to named columns, change column

names, derive new columns, give access to a
combination of related tables

• Evaluate table de-normalization

• What storage and media are used?
• How big is the database?
• How will the database grow over time?
• What are the required access speeds?
• Should data be partitioned by location or by

layer?
• Should the data be centralized or localized - if

so, on what server?
• Who is responsible for maintaining the data?
• Who performs QA/QC on updates & additions?

• A powerful, free form language for
manipulating two dimensional tables of any
size

• A command language for communication with
the database server from a tool or application.

• Is divided into subsets for specific processing
or interaction with the RDBMS.

• SELECT Statements
• Used to retrieve data from the RDBMS in a ad-hoc

manner.
• The data returned is almost always presented to the

user in table format (rows of data described by
columns).

SELECT Is a list of at least one column

DISTINCT Suppresses duplicates

* Selects all columns

Column Selects the name column(s)

Alias Gives the selected columns a different heading

FROM table Specifies the table containing the columns

WHERE Restricts the query to rows that meet a condition

Condition Is composed of column names, expressions, constants and
comparison operators

ORDERED BY Specifies the order in which the retrieved rows are
displayed

ASC Orders rows in ascending order

DESC Orders rows in descending order

• SELECT [DISTINCT} {*,column [alias],…}
• FROM table
• [WHERE condition(s)]
• ORDERED BY {column, expression} [ASC|DESC]];

• SELECT * FROM EASEMENTS;
• SELECT BOOK, PAGE, WIDTH * 12 AS “PROPOSED

WIDTH” FROM EASEMENTS;
• SELECT BOOK || ‘ __ ‘ || PAGE FROM EASEMENTS;
• SELECT DISTINCT WIDTH FROM EASEMENTS;

• SELECT DISTINCT WIDTH FROM EAEMENTS
• ORDER BY LAST_UPDATED:

(continued)

• SELECT BOOK, CASE_NO, WIDTH FROM EASEMETNS
• WERE LAST_USER = ‘VEENSTRA’
• ORDER BY LAST_UPDATED;

• Can use standards arithmetic operators (+.-,/,*)
• Can use standards comparison operations (<,>,<=,>=,=,<>)
• Can use single row functions

• (LOWER, UPPER, INITCAP, CONCAT, SUBSTR, LENGTH, NVL) -
Character Functions

• (ROUND, TRUNC, MOD) - Number Functions
• (MONTHS_BETWEEN, ADD-MONTHS, NEXT_DAY,

LAST_DAY, ROUND, TRUNC) - Date Functions
• (TO_CHAR, TO_DATE, TO_U�NUMBER) - Conversion Functions

• Can use multiple row functions (GROUP BY - HAVING Clause)
• AVG, COUNT, MIN, MAX, STDDEV, SUM, VARIANCE)

• SELECT EASEMENTS.EASEMENT_ID,
EASEMENT_TYPE_L.DESCRIPTION,
EASEMENTS.LAST_UPDATE

• FROM EASEMENTS, EASEMENT_TYPE L
• WHERE EASEMENTS.EASEMENT_TYPE =

EASEMENT_TYPE_L.EASEMENT_TYPE
• AND
• EASEMENT_TYPE_L.DESCRIPTION = ‘Confinement’;

Data Manipulation Language (DML)

• INSERT, UPDATE, DELETE
• used to add data to existing tables within a database or to

edit or remove existing data from within a database.

• INSERT INTO table [(column [, column…])]
• VALUES (value, [, value…]}];

• INSERT INTO table [(column [, column…])]
• Subquery;

• UPDATE table
• SET COLUMN = value[, column = value]
• [WHERE condition];

• DELETE [FROM} table
• [WHERE condition];

(DDL)

• CREATE, ALTER, DROP, RENAME, TRUNCATE
• a subset of SQL that is used to create, alter, drop or

otherwise change definitions of tables, views and
other database objects

• CREATE VIEW Easements
• AS SELECT…
• FROM…
• WHERE...

• GRANT, REVOKE -
• Used by the database administrator to grant or

revoke privileges to users of the RDBMS
• Examples: connect to the database, read data, insert data,

modify database objects, export or import data

• COMMIT, ROLLBACK, SAVEPOINT -
• Allows a user to cause the database to write the

results of processing to the database
• Allows the user to undo any changes made to the

data within the database

• Much like tables, objects abstract reality into
functional or logical components - abstraction.

• Objects encapsulate certain behavior,
functionality or data into discrete entities, often
hiding those attributes from the outside world.

• Objects can have properties (nouns), methods
(verbs) and events.

• Objects can belong to classes of objects and
super-classes of objects.

Object-Relational Databases

• Object/relational databases organize information in
the familiar relational tabular structures.

• Access the objects through the user of extenders,
cartridges and DataBlades.

• By encapsulating methods with data structures, an
ORDBMS server can execute complex analytical and
data manipulation operations to search and transform
multimedia and other complex objects.
• Traditional fielded data, complex objects such as time-

series and geo-spatial data and diverse binary media such as
audio, video, images and applets

Object-Relational Databases (continued)

• The most important new object/relational features are
user-defined types (UDTs), user-defined functions
(UDFs), and the infrastructures -- indexing/access
methods & optimizer enhancements -- that support them.

• The Object-Relational paradigm is quite strong.
• Advanced Web applications are notable beneficiaries of the

ORDBMS’s ability to integrate management of media,
traditional fielded data, and templates for dynamic page
generation

• To date, ORDBMSs have had their greatest success in
managing media objects and complex data such as geospatial
and financial time series data.

• Spatial Data Cartridge (Oracle), SDE - ArcFM, ARC/INFO 8.0

• Document, document, document.
• Look at the current output, reports and existing

databases.
• Work as part of a team at all stages of the

projects (two heads are better than one).
• Spend the time up front on analysis.
• Continually review information with end users.
• Do not skip the conceptual data modeling.
• Be consistent, thorough and patient.
• There is no right way to do something. Create

a balance between integrity and performance.

